Engineering of Yarrowia lipolytica for production of astaxanthin
نویسندگان
چکیده
Astaxanthin is a red-colored carotenoid, used as food and feed additive. Astaxanthin is mainly produced by chemical synthesis, however, the process is expensive and synthetic astaxanthin is not approved for human consumption. In this study, we engineered the oleaginous yeast Yarrowia lipolytica for de novo production of astaxanthin by fermentation. First, we screened 12 different Y. lipolytica isolates for β-carotene production by introducing two genes for β-carotene biosynthesis: bi-functional phytoene synthase/lycopene cyclase (crtYB) and phytoene desaturase (crtI) from the red yeast Xanthophyllomyces dendrorhous. The best strain produced 31.1 ± 0.5 mg/L β-carotene. Next, we optimized the activities of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG1) and geranylgeranyl diphosphate synthase (GGS1/crtE) in the best producing strain and obtained 453.9 ± 20.2 mg/L β-carotene. Additional downregulation of the competing squalene synthase SQS1 increased the β-carotene titer to 797.1 ± 57.2 mg/L. Then we introduced β-carotene ketolase (crtW) from Paracoccus sp. N81106 and hydroxylase (crtZ) from Pantoea ananatis to convert β-carotene into astaxanthin. The constructed strain accumulated 10.4 ± 0.5 mg/L of astaxanthin but also accumulated astaxanthin biosynthesis intermediates, 5.7 ± 0.5 mg/L canthaxanthin, and 35.3 ± 1.8 mg/L echinenone. Finally, we optimized the copy numbers of crtZ and crtW to obtain 3.5 mg/g DCW (54.6 mg/L) of astaxanthin in a microtiter plate cultivation. Our study for the first time reports engineering of Y. lipolytica for the production of astaxanthin. The high astaxanthin content and titer obtained even in a small-scale cultivation demonstrates a strong potential for Y. lipolytica-based fermentation process for astaxanthin production.
منابع مشابه
The production of Yarrowia lipolytica lipase powder by improved spray-drying method
Lipase is used in the production of foods, flavor enhancers, detergents, cosmetics and pharmaceuticals. A common impediment to the production of commercial enzymes is their low-stability aqueous solutions. In this study, the downstream process was investigated to obtain a stable spray-dried lipase powder of Yarrowia lipolytica. The enzyme solution samples were supplemented with different concen...
متن کاملRecent advances in bioengineering of the oleaginous yeast Yarrowia lipolytica
The oleaginous yeast, Yarrowia lipolytica, is becoming increasing popular for metabolic engineering applications. Advances in synthetic biology and metabolic engineering have allowed microorganisms such as Y. lipolytica to be tailored for specific chemical production. Significant progress has been made to understand the genetics of Y. lipolytica and towards developing novel genetic engineering ...
متن کاملCombinatorial Engineering of Yarrowia lipolytica as a Promising Cell Biorefinery Platform for the de novo Production of Multi-Purpose Long Chain Dicarboxylic Acids
This proof-of-concept study establishes Yarrowia lipolytica (Y. lipolytica) as a whole cell factory for the de novo production of long chain dicarboxylic acid (LCDCA-16 and 18) using glycerol as the sole source of carbon. Modification of the fatty acid metabolism pathway enabled creating a pool of fatty acids in a β-oxidation deficient strain. We then selectively upregulated the native fatty ac...
متن کاملEngineering Yarrowia lipolytica to enhance lipid production from lignocellulosic materials
Background Yarrowia lipolytica is a common biotechnological chassis for the production of lipids, which are the preferred feedstock for the production of fuels and chemicals. To reduce the cost of microbial lipid production, inexpensive carbon sources must be used, such as lignocellulosic hydrolysates. Unfortunately, lignocellulosic materials often contain toxic compounds and a large amount of ...
متن کاملBiotechnological production of γ-decalactone, a peach like aroma, by Yarrowia lipolytica.
The request for new flavourings increases every year. Consumer perception that everything natural is better is causing an increase demand for natural aroma additives. Biotechnology has become a way to get natural products. γ-Decalactone is a peach-like aroma widely used in dairy products, beverages and others food industries. In more recent years, more and more studies and industrial processes ...
متن کامل